TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION: Gas Technology

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Al-Ayen University
2. University Department/Centre	College of Petroleum Engineering
3. Course title/code	Gas Technology
4. Modes of Attendance offered	Online, classrooms and Tutorial
5. Semester/Year	Academic year 2022/2023
6. Number of hours tuition (total)	30 Theoretical hours
7. Date of production/revision of this	2/10/2022
specification	

8. Aims of the Course:

- A. Some brief definitions of terms used in the petroleum industry to describe natural gas reservoirs.
- B. Natural Gas Composition and Phase Behavior.
- C. It is necessary for the petroleum engineer to determine the properties Natural Gas from empirically derived correlations.
- D. The engineer involved in gas production operations must be able to predict not only the rate at which a well or field will produce, but also how much gas is originally in the reservoir and how much of it can be recovered economically.
- E. Determination of the inflow performance or reservoir flow capacity for a gas well requires a relationship between flow rate coming into a well and the sand-face pressure or flowing bottom-hole pressure.
- F. All calculation of natural gas flow in wells.
- G. Calculate of the static or flowing pressure at the formation must be known in order to predict the productivity or absolute open flow potential of gas wells.
- H. All calculation of Natural Gas flow through Restrictions.
- I. Several equations in the petroleum industry for calculating the flow of gases in pipelines.

J. Introduction to natural gas processing.

9. Learning Outcomes, Teaching , Learning and Assessment Method

A. Cognitive goals

- a. Knowledge of Natural gas resources
- b. The ability to relate volumes of gas existing in the reservoir to reservoir pressure, because the flow capacity of a well depends on the reservoir pressure.
- c. Fundmantels of natural gas processing

B. The skills goals special to the course.

- a. Simulation
- b. Applying the equations to relate volume and pressure of natural gas flow through production system.
- c. Economic Evaluation

Teaching and Learning Methods

- a. Lectures
- b. Discussions, dialogues and questions.
- c. Group tasks.

Assessment methods

- a. Quizzes
- b. Monthly exams
- c. Homework
- d. Final exam

C. Affective and value goals

a. Academic honesty in duties and not use cheating.

- b. Get knowledge about the latest technologies.
- c. Logic
- d. Critical Thinking

Teaching and Learning Methods

- d. Lectures
- e. Discussions, dialogues and questions.
- f. Group tasks.

Assessment methods

- e. Quizzes
- f. Monthly exams

g. Homework

h. Final exam

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

- a. Encouraging teamwork and self-confidence to accomplish tasks better.
- b. Encouraging creativity, innovation, and modernization.

10. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	2	Introduction to Natural gas resources	Natural gas resources	Theoretical lecture &Tutorial	Assignments and quizzes
2	2	Natural Gas Composition and Phase Behavior	Phase Behavior	Theoretical lecture &Tutorial	Assignments and quizzes
3-4	4	Natural Gas Properties	PVT	Theoretical lecture &Tutorial	Assignments and quizzes
5-7	6	Flow of Natural Gas in Porous Media	Flow Regime	Theoretical lecture &Tutorial	Assignments and quizzes
8-9	4	Basic flow equation Flow of natural gas in wells	Static and Flowing Bottom Hole Pressure	Theoretical lecture &Tutorial	Assignments and quizzes
10-11	4	Flow of Natural Gas through Restrictions	General Equation for Flow Through Restrictions	Theoretical lecture &Tutorial	Assignments and quizzes
12-13	4	Flow of natural gas in pipelines	Pipeline flow calculations	Theoretical lecture &Tutorial	Assignments and quizzes
14-15	4	Introduction to natural gas processing	Gas Dehydration and Sweetening	Theoretical lecture &Tutorial	Assignments and quizzes

11. Infrastructure			
1. Books Required reading:	Natural Gas Production Engineering, Chi U. Ikoku		
	Advanced Natural Gas Engineering, Xiuli Wang,		
	Michael Economides		
	Gas Production Operations, H. Dale Beggs		

2. Main references (sources)

A- Recommended books and references (scientific journals,reports).	SPE Electronic papers: <u>www.onepretro.org</u>
B-Electronic references, Internet:	www.onepretro.org

12. The development of the curriculum plan

- a. Adding some modern concepts in the oil production technology.
- b. Adding more technical skills by introducing more problems.